Local-Novel-LLM-project/Ninja-v1-NSFW-128k-GGUF

Advanced 7B parameter open-source language model

📥 Downloads: 0
⭐ Likes: 0
🗓️ Updated: 2025-01-01
🤗 View on HuggingFace 🚀 Deployment Guide 💻 Code Examples 🖥️ Hardware Requirements

📋 Overview

Local-Novel-LLM-project/Ninja-v1-NSFW-128k-GGUF is an advanced open-source language model developed by Local. With 7B parameters, this model offers excellent performance for a wide range of natural language processing tasks. It's designed to be accessible for both research and production use, with optimized inference capabilities.

Key Features:

  • General-purpose language model for various NLP tasks
  • Strong performance on reasoning and comprehension
  • Efficient architecture for fast inference

🚀 Deployment Guide

Method 1: Using Ollama (Recommended)

# Install Ollama
curl -fsSL https://ollama.com/install.sh | sh

# Run the model
ollama run Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF

Method 2: Using HuggingFace Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF")
tokenizer = AutoTokenizer.from_pretrained("Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF")

prompt = "Your prompt here"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0]))

Method 3: Using vLLM (Production)

# Install vLLM
pip install vllm

# Start server
python -m vllm.entrypoints.openai.api_server \
    --model Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF \
    --host 0.0.0.0 \
    --port 8000

Method 4: Using Docker

docker run -d \
  -p 8080:8080 \
  -v ~/.cache/huggingface:/root/.cache/huggingface \
  ghcr.io/huggingface/text-generation-inference:latest \
  --model-id Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF

💻 Code Examples

Python Example

import requests

response = requests.post("http://localhost:8000/v1/completions", json={
    "model": "Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF",
    "prompt": "Write a function to calculate fibonacci numbers",
    "max_tokens": 200
})

print(response.json()["choices"][0]["text"])

cURL Example

curl http://localhost:8000/v1/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "Local/Novel/LLM/project/Ninja/v1/NSFW/128k/GGUF",
    "prompt": "Explain quantum computing",
    "max_tokens": 200
  }'

🎯 Use Cases

💬 Chatbots

Build intelligent conversational AI

📝 Content Generation

Create articles, summaries, and more

💻 Code Assistance

Help with coding tasks and debugging

🔍 Q&A Systems

Answer questions from knowledge bases

🖥️ Hardware Requirements

Minimum:
  • RAM: 16GB
  • GPU: RTX 3060 (optional)
  • Storage: 15GB
Recommended:
  • RAM: 32GB
  • GPU: RTX 4090
  • Storage: 30GB

📊 Model Stats

Parameters: 7B
Context Length: 128,000 tokens
License: MIT / Apache 2.0
Architecture: Decoder-only Transformer

🔗 Resources

🤗 HuggingFace Page 📄 Research Paper 💻 GitHub Repository 🔙 Back to Directory

❓ Frequently Asked Questions

How do I choose between deployment methods?

Ollama is best for local development and testing. vLLM is recommended for production deployments with high throughput requirements. HuggingFace Transformers offers the most flexibility for custom implementations.

Can I run this on CPU only?

Yes, but GPU acceleration is highly recommended for acceptable performance. On CPU, expect slower inference times, especially for larger models.

Is this model suitable for commercial use?

Check the MIT / Apache 2.0 license terms. Most open-source models allow commercial use, but some have restrictions.

🔗 Similar Models

Llama 3 8B

Popular general-purpose model with similar capabilities

Learn more →